Примеры мышечной ткани человека. Поперечно-полосатая сердечная мышечная ткань. Молекулярный механизм мышечного сокращения

Мышечные ткани - это ткани, отличающиеся по структуре и происхождению, но имеют общую способность к сокращению. Состоят из миоцитов - клеток, которые могут воспринимать нервные импульсы и отвечать на них сокращением.

Свойства и виды мышечной ткани

Морфологические признаки:

  • Вытянутая форма миоцитов;
  • продольно размещены миофибриллы и миофиламенты;
  • митохондрии находятся вблизи сократительных элементов;
  • присутствуют полисахариды, липиды и миоглобин.

Свойства мышечной ткани:

  • Сократимость;
  • возбудимость;
  • проводимость;
  • растяжимость;
  • эластичность.

Выделяют следующие виды мышечной ткани в зависимости от морфофункциональных особенностей:

  1. Поперечнополосатая: скелетная, сердечная.
  2. Гладкая.

Гистогенетическая классификация делит мышечные ткани на пять видов в зависимости от эмбрионального источника:

  • Мезенхимные - десмальный зачаток;
  • эпидермальные - кожная эктодерма;
  • нейральные - нервная пластинка;
  • целомические - спланхнотомы;
  • соматические - миотом.

Из 1-3 видов развиваются гладкомышечные ткани, 4, 5 дают поперечнополосатые мышцы.

Строение и функции гладкой мышечной ткани

Cостоит из отдельных мелких веретеновидных клеток. Эти клетки имеют одно ядро и тонкие миофибриллы, которые тянутся от одного конца клетки к другому. Гладкие мышечные клетки объединяются в пучки, состоящие из 10-12 клеток. Это объединение возникает благодаря особенностям иннервации гладкой мускулатуры и облегчает прохождение нервного импульса на всю группу гладких мышечных клеток. Сокращается гладкая мышечная ткань ритмично, медленно и на протяжении длительного времени, способна при этом развивать большую силу без значительных затрат энергии и без утомления.

У низших многоклеточных животных из гладкой мышечной ткани состоят все мышцы, тогда как у позвоночных животных она входит в состав внутренних органов (кроме сердца).

Сокращения этих мышц не зависят от воли человека, т. е. происходят непроизвольно.

Функции гладкой мышечной ткани:

  • Поддерживание стабильного давления в полых органах;
  • регуляция уровня кровяного давления;
  • перистальтика пищеварительного тракта, перемещения по нему содержимого;
  • опорожнение мочевого пузыря.

Строение и функции скелетной мышечной ткани


Cостоит из длинных и толстых волокон длиной 10-12 см. Скелетная мускулатура характеризуется произвольным сокращением (в ответ на импульсы, идущие из коры головного мозга). Скорость ее сокращения в 10-25 раз выше, чем в гладкой мышечной ткани.

Мышечное волокно поперечнополосатой ткани покрыто оболочкой - сарколеммой. Под оболочкой находится цитоплазма с большим количеством ядер, расположенных по периферии цитоплазмы, и сократительными нитями - миофибриллами. Состоит миофибрилла из последовательно чередующихся темных и светлых участков (дисков), обладающих разным коэффициентом преломления света. С помощью электронного микроскопа установлено, что миофибрилла состоит из протофибрилл. Тонкие протофибриллы построены из белка - актина, аболее толстые - из миозина.

При сокращении волокон происходит возбуждение сократимых белков, тонкие протофибриллы скользят по толстым. Актин реагирует с миозином, и возникает единая актомиозиновая система.

Функции скелетной мышечной ткани:

  • Динамическая - перемещение в пространстве;
  • статическая - поддержание определенной позиции частей тела;
  • рецепторная - проприорецепторы, воспринимающие раздражение;
  • депонирующая - жидкость, минералы, кислород, питательные вещества;
  • терморегуляция - расслабление мышц при повышении температуры для расширения сосудов;
  • мимика - для передачи эмоций.

Строение и функции сердечной мышечной ткани


Сердечная мышечная ткань

Миокард построен из сердечной мышечной и соединительной ткани, с сосудами и нервами. Мышечная ткань относится к поперечнополосатой мускулатуре, исчерченность которой также обусловлена наличием разных типов миофиламентов. Миокард состоит из волокон, которые связаны между собой и формируют сетку. Эти волокна включают одно или двухъядерные клетки, что расположены в виде цепочки. Они получили название сократительных кардиомиоцитов.

Сократительные кардиомиоциты длиной от 50 до 120 микрометров, шириной - до 20 мкм. Ядро здесь располагается в центре цитоплазмы, в отличие от ядер поперечно полосатых волокон. Кардиомиоциты имеют больше саркоплазма и меньше миофибрилл, в сравнении со скелетными мышцами. В клетках сердечной мышцы находится много митохондрий, так как непрерывные сердечные сокращения требуют много энергии.

Вторая разновидность клеток миокарда - это проводящие кардиомиоциты, которые формируют проводящую систему сердца. Проводящие миоциты обеспечивают передачу импульса к сократительным мышечным клеткам.

Функции сердечной мышечной ткани:

  • Насосная;
  • обеспечивает ток крови в кровеносном русле.

Компоненты сократительной системы

Особенности строения мышечной ткани обусловлены выполняемыми функциями, возможностью принимать и проводить импульсы, способностью к сокращению. Механизм сокращения заключается в согласованной работе ряда элементов: миофибрилл, сократительных белков, митохондрий, миоглобина.

В цитоплазме мышечных клеток имеются особые сократительные нити - миофибриллы, сокращение которых возможно при содружественной работе белков - актина и миозина, а также при участии ионов Са. Митохондрии снабжают все процессы энергией. Также энергетические запасы образуют гликоген и липиды. Миоглобин необходим для связывания O 2 и формирование его запаса на период сокращения мышцы, так как во время сокращения идет сдавление кровеносных сосудов и снабжение мышц O 2 резко снижается.

Таблица. Соответствие между характеристикой мышечной ткани и ее видом

Вид ткани Характеристика
Гладкомышечная Входит в состав стенок кровеносных сосудов
Структурная единица – гладкий миоцит
Сокращается медленно, неосознанно
Поперечная исчерченность отсутствует
Скелетная Структурная единица – многоядерное мышечное волокно
Свойственна поперечная исчерченность
Сокращается быстро, осознанно

Где находится мышечная ткань?

Гладкие мышцы являются составной частью стенок внутренних органов: желудочно-кишечного тракта, мочеполовой системы, сосудов. Входят в состав капсулы селезенки, кожных покровов, сфинктера зрачка.

Скелетная мускулатуразанимают около 40% от массы тела человека, с помощью сухожилий крепятся к костям. Из этой ткани состоят скелетные мышцы, мышцы рта, языка, глотки, гортани, верхнего участка пищевода, диафрагмы, мимическая мускулатура. Также поперечно полосатые мышцы находится в миокарде.

Чем мышечное волокно скелетной мышцы отличается от гладкой мышечной ткани?

Волокна поперечнополосатых мышц намного длиннее (до 12см), чем клеточные элементы гладкомышечной ткани (0,05-0,4мм). Также скелетные волокна имеют поперечную исчерченность благодаря особому расположению нитей актина и миозина. Для гладких мышц это не характерно.

В мышечных волокнах находится много ядер, а сокращение волокон сильное, быстрое и осознанное. В отличие от гладких мышц, клетки гладкомышечной ткани одноядерные, способны сокращаться в медленном темпе и неосознанно.

Мышечные ткани представляют собой группу тканей различного происхождения и строения, объединенных на основании общего признака - выраженной сократительной способности, благодаря которой они могут выполнять свою основную функцию - перемещать тело или его части в пространстве.

Важнейшие свойства мышечных тканей. Структурные элементы мышечных тканей (клетки, волокна) обладают удлиненной формой и способны к сокращению благодаря мощному развитию сократительного аппарата. Для последнего характерно высокоупорядоченное расположение актиновых и миозиновых миофиламентов, создающее оптимальные условия для их взаимодействия. Это достигается связью сократимых структур с особыми элементами цитоскелета и плазмолеммой (сарколеммой), выполняющими опорную функцию. В части мышечных тканей миофиламенты образуют органеллы специального значения - миофибриллы. Для мышечного сокращения требуется значительное количество энергии, поэтому в структурных элементах мышечных тканей имеется большое количество митохондрий и трофических включений (липидных капель, гранул гликогена), содержащих субстраты - источники энергии. Поскольку мышечное сокращение протекает с участием ионов кальция, в мышечных клетках и волокнах хорошо развиты структуры, осуществляющие его накопление и выделение - агранулярная эндоплазматическая сеть (саркоплазматическая сеть), кавеолы.

Классификация мышечных тканей основана на признаках их (а) строения и функции (морфофункциональная классификация) и (б) происхождения (гистогенетическая классификация).

Морфофункциональная классификация мышечных тканей выделяет поперечнополосатые (исчерченные) мышечные ткани и гладкую мышечную ткань. Поперечнополосатые мышечные ткани образованы структурными элементами (клетками, волокнами), которые обладают поперечной исчерченностью вследствие особого упорядоченного взаиморасположения в них актиновых и миозиновых миофиламентов. К поперечнополосатым мышечным тканям относят скелетную и сердечную мышечную ткани. Гладкая мышечная ткань состоит из клеток, не обладающих поперечной исчерченностью. Наиболее распространенным видом этой ткани является гладкая мышечная ткань, входящая в состав стенки различных органов (бронхов, желудка, кишки, матки, маточной трубы, мочеточника, мочевого пузыря и сосудов).

Гистогенетическая классификация мышечных тканей выделяет три основных типа мышечных тканей: соматический (скелетная мышечная ткань), целомический (сердечная мышечная ткань) и мезенхимный (гладкая мышечная ткань внутренних органов), а также два дополнительных: миоэпителиальные клетки (видоизмененные эпителиальные сократимые клетки в концевых отделах и мелких выводных протоках некоторых желез) и мионейральные элементы (сократимые клетки нейрального происхождения в радужке глаза).

Скелетная поперечнополосатая (исчерченная) мышечная ткань по своей массе превышает любую другую ткань организма и является самой распространенной мышечной тканью тела человека. Она обеспечивает перемещение тела и его частей в пространстве и поддержание позы (входит в состав локомоторного аппарата), образует глазодвигательные мышцы, мышцы стенки полости рта, языка, глотки, гортани. Аналогичное строение имеет нескелетная висцеральная исчерченная мышечная ткань, которая обнаруживается в верхней трети пищевода, входит в состав наружных анального и уретрального сфинктеров.

Скелетная поперечнополосатая мышечная ткань развивается в эмбриональном периоде из миотомов сомитов, дающих начало активно делящимся миобластам - клеткам, которые располагаются цепочками и сливаются друг с другом в области концов с образованием мышечных трубочек (миотубул) , превращающихся в мышечные волокна. Такие структуры, образованные единой гигантской цитоплазмой и многочисленными ядрами, в отечественной литературе традиционно именуют симпластами (в данном случае - миосимпластами), однако этот термин отсутствует в принятой международной терминологии. Некоторые миобласты не сливаются с другими, располагаясь на поверхности волокон и давая начало миосателлитоцитам - мелким клеткам, которые являются камбиальными элементами скелетной мышечной ткани. Скелетная мышечная ткань образована собранными в пучки поперечнополосатыми мышечными волокнами (рис. 87), являющимися ее структурно-функциональными единицами.

Мышечные волокна скелетной мышечной ткани представляют собой цилиндрические образования вариабельной длины (от миллиметров до 10-30 см). Их диаметр также широко варьирует в зависимости от принадлежности к определенной мышце и типу, функционального состояния, степени функциональной нагрузки, состояния питания

и других факторов. В мышцах мышечные волокна образуют пучки, в которых они лежат параллельно и, деформируя друг друга, часто приобретают неправильную многогранную форму, что особенно хорошо видно на поперечных срезах (см. рис. 87). Между мышечными волокнами располагаются тонкие прослойки рыхлой волокнистой соединительной ткани, несущие сосуды и нервы - эндомизий. Поперечная исчерченность скелетных мышечных волокон обусловлена чередованием темных анизотропных дисков (полос А) и светлых изотропных дисков (полос I). Каждый изотропный диск рассекается надвое тонкой темной линией Z - телофрагмой (рис. 88). Ядра мышечного волокна - сравнительно светлые, с 1-2 ядрышками, диплоидные, овальные, уплощенные - лежат на его периферии под сарколеммой и располагаются вдоль волокна. Снаружи сарколемма покрыта толстой базальной мембраной, в которую вплетаются ретикулярные волокна.

Миосателлитоциты (клетки-миосателлиты) - мелкие уплощенные клетки, располагающиеся в неглубоких вдавлениях сарколеммы мышечного волокна и покрытые общей базальной мембраной (см. рис. 88). Ядро миосателлитоцита - плотное, относительно крупное, органеллы мелкие и немногочисленные. Эти клетки активируются при повреждении мышечных волокон и обеспечивают их репаративную регенерацию. Сливаясь с остальной частью волокна при усиленной нагрузке, миосателлитоциты участвуют в его гипертрофии.

Миофибриллы образуют сократительный аппарат мышечного волокна, располагаются в саркоплазме по ее длине, занимая центральную часть, и отчетливо выявляются на поперечных срезах волокон в виде мелких точек (см. рис. 87 и 88).

Миофибриллы обладают собственной поперечной исчерченностью, причем в мышечном волокне они располагаются столь упорядоченно, что изотропные и анизотропные диски разных миофибрилл совпадают между собой, обусловливая поперечную исчерченность всего волокна. Каждая миофибрилла образована тысячами повторяющихся последовательно связанных между собой структур - саркомеров.

Саркомер (миомер) является структурно-функциональной единицей миофибриллы и представляет собой ее участок, расположенный между двумя телофрагмами (линиями Z). Он включает анизотропный диск и две половины изотропных дисков - по одной половине с каждой стороны (рис. 89). Саркомер образован упорядоченной системой толстых (миозиновых) и тонких (актиновьх) миофиламентов. Толстые миофиламенты связаны с мезофрагмой (линией М) и сосредоточены в анизотропном диске,

а тонкие миофиламенты прикреплены к телофрагмам (линиям Z), образуют изотропные диски и частично проникают в анизотропный диск между толстыми нитями вплоть до светлой полосы Н в центре анизотропного диска.

Механизм мышечного сокращения описывается теорией скользящих нитей, согласно которой укорочение каждого саркомера (а, следовательно, миофибрилл и всего мышечного волокна) при сокращении происходит благодаря тому, что в результате взаимодействия актина и миозина в присутствии кальция и АТФ тонкие нити вдвигаются в промежутки между толстыми без изменения их длины. При этом ширина анизотропных дисков не меняется, а ширина изотропных дисков и полос Н - уменьшается. Строгая пространственная упорядоченность взаимодействия множества толстых и тонких миофиламентов в саркомере определяется наличием сложно организованного поддерживающего аппарата, к которому, в частности, относятся телофрагма и мезофрагма. Кальций выделяется из саркоплазматической сети, элементы которой оплетают каждую миофибриллу, после поступления сигнала с сарколеммы по Т-трубочкам (совокупность этих элементов описывается как саркотубулярная система).

Скелетная мышца как орган состоит из пучков мышечных волокон, связанных воедино системой соединительнотканных компонентов (рис. 90). Снаружи мышцу покрывает эпимизий - тонкий, прочный и гладкий чехол из плотной волокнистой соединительной ткани, отдающий вглубь органа более тонкие соединительнотканные перегородки - перимизий, который окружает пучки мышечных волокон. От перимизия внутрь пучков мышечных волокон отходят тончайшие прослойки рыхлой волокнистой соединительной ткани, окружающие каждое мышечное волокно - эндомизий.

Типы мышечных волокон в скелетной мышце - разновидности мышечных волокон с определенными структурными, биохимическими и функцио нальными различиями. Типирование мышечных волокон производится на препаратах при постановке гистохимических реакций выявления ферментов - например, АТФазы, лактатдегидрогеназы (ЛДГ), сукцинатдегидрогеназы (СДГ) (рис. 91) и др. В обобщенном виде можно условно выделить три основных типа мышечных волокон, между которыми существуют переходные варианты.

Тип I (красные) - медленные, тонические, устойчивые к утомлению, с небольшой силой сокращения, окислительные. Характеризуются малым диаметром, относительно тонкими миофибриллами,

высокой активностью окислительных ферментов (например, СДГ), низкой активностью гликолитических ферментов и миозиновой АТФазы, преобладанием аэробных процессов, высоким содержанием пигмента миоглобина (определяющим их красный цвет), крупных митохондрий и липидных включений, богатым кровоснабжением. Численно преобладают в мышцах, выполняющих длительные тонические нагрузки.

Тип IIВ (белые) - быстрые, тетанические, легко утомляющиеся, с большой силой сокращения, гликолитические. Характеризуются большим диаметром, крупными и сильными миофибриллами, высокой активностью гликолитических ферментов (например, ЛДГ) и АТФазы, низкой активностью окислительных ферментов, преобладанием анаэробных процессов, относительно низким содержанием мелких митохондрий, липидов и миоглобина (определяющим их светлый цвет), значительным количеством гликогена, сравнительно слабым кровоснабжением. Преобладают в мышцах, выполняющих быстрые движения, например, мышцах конечностей.

Тип IIА (промежуточные) - быстрые, устойчивые к утомлению, с большой силой, оксилительно-гликолитические. На препаратах напоминают волокна типа I. В равной степени способны использовать энергию, получаемую путем окислительных и гликолитических реакций. По своим морфологическим и функциональным характеристикам занимают положение, промежуточное между волокнами типа I и IIB.

Скелетные мышцы человека являются смешанными, т. е. содержат волокна различных типов, которые распределены в них мозаично (см. рис. 91).

Сердечная поперечнополосатая (исчерченная) мышечная ткань встречается в мышечной оболочке сердца (миокарде) и устьях связанных с ним крупных сосудов. Основным функциональным свойством сердечной мышечной ткани служит способность к спонтанным ритмическим сокращениям, на активность которых влияют гормоны и нервная система. Эта ткань обеспечивает сокращения сердца, которые поддерживают циркуляцию крови в организме. Источником развития сердечной мышечной ткани служит миоэпикардиальная пластинка висцерального листка спланхнотома (целомическая выстилка в шейной части эмбриона). Клетки этой пластинки (миобласты) активно размножаются и постепенно превращаются в сердечные мышечные клетки - кардиомиоциты (сердечные миоциты). Выстраиваясь в цепочки, кардиомиоциты формируют сложные межклеточные соединения - вставочные диски, связывающие их в сердечные мышечные волокна.

Зрелая сердечная мышечная ткань образована клетками - кардиомиоцитами, связанными друг с другом в области вставочных дисков и образующими трехмерную сеть ветвящихся и анастомозирующих сердечных мышечных волокон (рис. 92).

Кардиомиоциты (сердечные миоциты) - цилиндрические или ветвящиеся клетки, более крупные в желудочках. В предсердиях они обычно имеют неправильную форму и меньшие размеры. Эти клетки содержат одно или два ядра и саркоплазму, покрыты сарколеммой, которая снаружи окружена базальной мембраной. Их ядра - светлые, с преобладанием эухроматина, хорошо заметными ядрышками - занимают в клетке центральное положение. У взрослого человека значительная часть кардиомиоцитов - полиплоидные, более половины - двуядерные. Саркоплазма кардиомиоцитов содержит многочисленные органеллы и включения, в частности, мощный сократительный аппарат, который сильно развит в сократительных (рабочих) кардиомиоцитах (в особенности, в желудочковых). Сократительный аппарат представлен сердечными исчерченными миофибриллами, по строению сходными с миофибриллами волокон скелетной мышечной ткани (см. рис. 94); в совокупности они обусловливают поперечную исчерченность кардиомиоцитов.

Между миофибриллами у полюсов ядра и под сарколеммой располагаются очень многочисленные и крупные митохондрии (см. рис. 93 и 94). Миофибриллы окружены элементами саркоплазматической сети, связанными с Т-трубочками (см. рис. 94). Цитоплазма кардиомиоцитов содержит кислородсвязывающий пигмент миоглобина и скопления энергетических субстратов в виде липидных капель и гранул гликогена (см. рис. 94).

Типы кардиомиоцитов в сердечной мышечной ткани различаются структурными и функциональными признаками, биологической ролью и топографией. Выделяют три основных типа кардиомиоцитов (см. рис. 93):

1)сократительные (рабочие) кардиомиоциты образуют основную часть миокарда и характеризуются мощно развитым сократительным аппаратом, занимающим бjльшую часть их саркоплазмы;

2)проводящие кардиомиоциты обладают способностью к генерации и быстрому проведению электрических импульсов. Они образуют узлы, пучки и волокна проводящей системы сердца и разделяются на несколько подтипов. Характеризуются слабым развитием сократительного аппарата, светлой саркоплазмой и крупными ядрами. В проводящих сердечных волокнах (Пуркинье) эти клетки имеют крупные размеры (см. рис. 93).

3)секреторные (эндокринные) кардиомиоциты располагаются в предсердиях (в особенности, пра-

вом) и характеризуются отростчатой формой и слабым развитием сократительного аппарата. В их саркоплазме вблизи полюсов ядра находятся окруженные мембраной плотные гранулы, содержащие предсердный натриуретический пептид (гормон, вызывающий потерю натрия и воды с мочой, расширение сосудов, снижение артериального давления).

Вставочные диски осуществляют связь кардиомиоцитов друг с другом. Под световым микроскопом они имеют вид поперечных прямых или зигзагообразных полосок, пересекающих сердечное мышечное волокно (см. рис. 92). Под электронным микроскопом определяется сложная организация вставочного диска, представляющего собой комплекс межклеточных соединений нескольких типов (см. рис. 94). В области поперечных (ориентированных перпендикулярно расположению миофибрилл) участков вставочного диска соседние кардиомиоциты образуют многочисленные интердигитации, связанные контактами типа десмосом и адгезивных фасций. Актиновые филаменты прикрепляются к поперечным участкам сарколеммы вставочного диска на уровне линии Z. На сарколемме продольных участков вставочного диска имеются многочисленные щелевые соединения (нексусы), обеспечивающие ионную связь кардиомиоцитов и передачу импульса сокращения.

Гладкая мышечная ткань входит в состав стенки полых (трубчатых) внутренних органов - бронхов, желудка, кишки, матки, маточных труб, мочеточников, мочевого пузыря (висцеральная гладкая мышечная ткань), а также сосудов (васкулярная гладкая мышечная ткань). Гладкая мышечная ткань встречается также в коже, где она образует мышцы, поднимающие волос, в капсулах и трабекулах некоторых органов (селезенка, яичко). Благодаря сократительной активности этой ткани обеспечивается деятельность органов пищеварительного тракта, регуляция дыхания, крово- и лимфотока, выделение мочи, транспорт половых клеток и др. Источником развития гладкой мышечной ткани у эмбриона является мезенхима. Свойствами гладких миоцитов обладают также некоторые клетки, имеющие другое происхождение - миоэпителиальные клетки (видоизмененные сократительные эпителиальные клетки в некоторых железах) и мионейральные клетки радужки глаза (развиваются из нейрального зачатка). Структурно-функциональной единицей гладкой мышечной ткани служит гладкий миоцит (гладкая мышечная клетка).

Гладкие миоциты (гладкие мышечные клетки) - вытянутые клетки преимущественно вере-

теновидной формы, не обладающие поперечной исчерченностью и образующие многочисленные соединения друг с другом (рис. 95-97). Сарколемма каждого гладкого миоцита окружена базальной мембраной, в которую вплетаются тонкие ретикулярные, коллагеновые и эластические волокна. Гладкие миоциты содержат одно удлиненное диплоидное ядро с преобладанием эухроматина и 1-2 ядрышками, расположенное в центральной утолщенной части клетки. В саркоплазме гладких миоцитов умеренно развитые органеллы общего значения располагаются вместе с включениями в конусовидных участках у полюсов ядра. Периферическая ее часть занята сократительным аппаратом - актиновыми и миозиновыми миофиламентами, которые в гладких миоцитах не формируют миофибрилл. Актиновые миофиламенты прикрепляются в саркоплазме к овальным или веретеновидным плотным тельцам (см. рис. 97) - структурам, гомологичным линиям Z в поперечнополосатых тканях; сходные образования, связанные с внутренней поверхностью сарколеммы, называют плотными пластинками.

Сокращение гладких миоцитов обеспечивается взаимодействием миофиламентов и развивается в соответствии с моделью скользящих нитей. Как и в поперечнополосатых мышечных тканях, сокращение гладких миоцитов индуцируется притоком Са 2+ в саркоплазму, который в этих клетках выделяется саркоплазматической сетью и кавеолами - многочисленными колбовидными впячиваниями поверхности сарколеммы. Благодаря выраженной синтетической активности гладкие миоциты продуцируют и выделяют (подобно фибробластам) коллагены, эластин и компоненты аморфного вещества. Они способны также синтезировать и секретировать ряд факторов роста и цитокинов.

Гладкая мышечная ткань в органах обычно представлена пластами, пучками и слоями гладких миоцитов (см. рис. 95), внутри которых клетки связаны интердигитациями, адгезивными и щелевыми соединениями. Расположение гладких миоцитов в пластах таково, что узкая часть одной клетки прилежит к широкой части другой. Это способствует наиболее компактной укладке миоцитов, обеспечению максимальной площади их взаимных контактов и высокой прочности ткани. В связи с описанным расположением гладких мышечных клеток в пласте на поперечных срезах соседствуют сечения миоцитов, разрезанных в широкой части и в области узкого края (см. рис. 95).

МЫШЕЧНЫЕ ТКАНИ

Рис. 87. Скелетная поперечнополосатая мышечная ткань

1 - мышечное волокно: 1.1 - сарколемма, покрытая базальной мембраной, 1.2 - саркоплазма, 1.2.1 - миофибриллы, 1.2.2 - поля миофибрилл (Конгейма); 1.3 - ядра мышечного волокна; 2 - эндомизий; 3 - прослойки рыхлой волокнистой соединительной ткани между пучками мышечных волокон: 3.1 - кровеносные сосуды, 3.2 - жировые клетки

Рис. 88. Скелетное мышечное волокно (схема):

1 - базальная мембрана; 2 - сарколемма; 3 - миосателлитоцит; 4 - ядро миосимпласта; 5 - изотропный диск: 5.1 - телофрагма; 6 - анизотропный диск; 7 - миофибриллы

Рис. 89. Участок миофибриллы волокна скелетной мышечной ткани (саркомер)

Рисунок с ЭМФ

1 - изотропный диск: 1.1 - тонкие (актиновые) миофиламенты, 1.2 - телофрагма; 2 - анизотропный диск: 2.1 - толстые (миозиновые) миофиламенты, 2.2 - мезофрагма, 2.3 - полоса Н; 3 - саркомер

Рис. 90. Скелетная мышца (поперечный срез)

Окраска: гематоксилин-эозин

1 - эпимизий; 2 - перимизий: 2.1 - кровеносные сосуды; 3 - пучки мышечных волокон: 3.1 - мышечные волокна, 3.2 - эндомизий: 3.2.1 - кровеносные сосуды

Рис. 91. Типы мышечных волокон (поперечный срез скелетной мышцы)

Гистохимическая реакция выявления сукцинатдегидрогеназы (СДГ)

1 - волокна I типа (красные волокна) - с высокой активностью СДГ (медленные, окислительные, устойчивые к утомлению); 2 - волокна IIВ типа (белые волокна) - с низкой активностью СДГ (быстрые, гликолитические, утомляемые); 3 - волокна IIА типа (промежуточные волокна) - с умеренной активностью СДГ (быстрые, окислительно-гликолитические, устойчивые к утомлению)

Рис. 92. Сердечная поперечнополосатая мышечная ткань

Окраска: железный гематоксилин

А - продольный срез; Б - поперечный срез:

1 - кардиомиоциты (образуют сердечные мышечные волокна): 1.1 - сарколемма, 1.2 - саркоплазма, 1.2.1 - миофибриллы, 1.3 - ядро; 2 - вставочные диски; 3 - анастомозы между волокнами; 4 - рыхлая волокнистая соединительная ткань: 4.1 - кровеносные сосуды

Рис. 93. Ультраструктурная организация кардиомиоцитов различных типов

Рисунки с ЭМФ

A - сократительный (рабочий) кардиомиоцит желудочка сердца:

1 - базальная мембрана; 2 - сарколемма; 3 - саркоплазма: 3.1 - миофибриллы, 3.2 - митохондрии, 3.3 - липидные капли; 4 - ядро; 5 - вставочный диск.

Б - кардиомиоцит проводящей системы сердца (из субэндокардиальной сети волокон Пуркинье):

1 - базальная мембрана; 2 - сарколемма; 3 - саркоплазма: 3.1 - миофибриллы, 3.2 - митохондрии; 3.3 - гранулы гликогена, 3.4 - промежуточные филаменты; 4 - ядра; 5 - вставочный диск.

В - эндокринный кардиомиоцит из предсердия:

1 - базальная мембрана; 2 - сарколемма; 3 - саркоплазма: 3.1 - миофибриллы, 3.2 - митохондрии, 3.3 - секреторные гранулы; 4 - ядро; 5 - вставочный диск

Рис. 94. Ультраструктурная организация области вставочного диска между соседними кардиомиоцитами

Рисунок с ЭМФ

1 - базальная мембрана; 2 - сарколемма; 3 - саркоплазма: 3.1 - миофибриллы, 3.1.1 - саркомер, 3.1.2 - изотропный диск, 3.1.3 - анизотропный диск, 3.1.4 - светлая полоса Н, 3.1.5 - телофрагма, 3.1.6 - мезофрагма, 3.2 - митохондрии, 3.3 - Т-трубочки, 3.4 - элементы саркоплазматической сети, 3.5 - липидные капли, 3.6 - гранулы гликогена; 4 - вставочный диск: 4.1 - интердигитации, 4.2 - адгезивная фасция, 4.3 - десмосома, 4.4 - щелевое соединение (нексус)

Рис. 95. Гладкая мышечная ткань

Окраска: гематоксилин-эозин

А - продольный срез; Б - поперечный срез:

1 - гладкие миоциты: 1.1 - сарколемма, 1.2 - саркоплазма, 1.3 - ядро; 2 - прослойки рыхлой волокнистой соединительной ткани между пучками гладких миоцитов: 2.1 - кровеносные сосуды

Рис. 96. Изолированные гладкие мышечные клетки

Окраска: гематоксилин

1 - ядро; 2 - саркоплазма; 3 - сарколемма

Рис. 97. Ультраструктурная организация гладкого миоцита (участок клетки)

Рисунок с ЭМФ

1 - сарколемма; 2 - саркоплазма: 2.1 - митохондрии, 2.2 - плотные тельца; 3 - ядро; 4 - базальная мембрана

Мышечные ткани являются тканями, различающимися как своим строением, так и происхождением. Тем не менее, при этом их объединяет то, что они способны к ярко выраженным сокращениям. В основе мышечных тканей продолговатые клетки, к которым поступают импульсы со стороны центральной нервной системы, а реакцией на это становится их сокращение. Благодаря мышечной ткани, организм и внутренние органы и системы (сердце, легкие, кишечник и т.п.), из которых он состоит, способны перемещаться, меняя свое положение в пространстве. Способность к изменению формы и сокращениям есть также у клеток других тканей. Однако в мышечной ткани подобная функция является основной.

Особенности строения мышечной ткани

Важнейшие признаки основных слагаемых мышечной ткани – это их продолговатая форма, наличие вытянутых и соответственным образом расположенных миофиламентов и миофибрилл (которые и обеспечивают сократимость мышц), а также наличие в составе митохондрий, липидов, гликогена и миоглобина. Внутри сократительных органелл вступают во взаимодействие миозин и актин (с одновременным участием в реакции ионов Ca), в результате чего возникает мышечное сокращение. Источником энергии для сократительных процессов являются митохондрии, липиды и гликоген. Кислород связывается и накапливается посредством такого белка, как миоглобин, что происходит в момент мышечного сокращения и одновременного сдавливания кровеносных сосудов.

Классификация мышечных волокон

С учетом характера сокращения, различают тонические и фазные мышечные волокна. В частности, первый тип волокон призван обеспечить тонус (или статическое напряжение мышцы), что особенно важно для удержания того или иного положения тела относительно пространственных координат. Фазные волокна призваны гарантировать возможность выполнения быстрых сокращений, но при этом не способны долго удерживать укорочение мышечного волокна на определенном уровне. С учетом биохимических особенностей, а также цвета, различают белые и красные волокна. Цвет мышечной ткани определяет концентрация в ней миоглобина (так называемая, степень васкуляризации). Одной из особенностей мышечного волокна красного цвета является присутствие в его составе цепей митохондрий, находящихся в окружении миофибрилл. Несколько меньшее количество митохондрий в белом мышечном волокне. Они обычно равномерно размещены в саркоплазме.

В зависимости от особенностей окислительного обмена, мышечные волокна могут быть гликолитическими, оксидативными и промежуточными. Различают волокна на базе информации о степени активности фермента СДГ, который является маркером для так называемого цикла Кребса и митохондрий. По степени активности данного фермента может быть определена напряженность энергетического метаболизма. Гликолитические волокна (или волокна А-типа) отличаются невысокой активностью вышеозначенного фермента, а оксидативные (или волокна С-типа) наоборот имеют повышенную активность сукцинатдегидрогеназы. Волокна В-типа – это волокна, занимающие промежуточное положение. Процесс перехода от волокон типа А к волокнам типа С - это переход к зависящему от кислорода метаболизму от анаэробного гликолиза. В качестве примера можно привести ситуацию, когда спортивные тренировки в совокупности с питанием нацелены на быстрое развитие и формирование гликолитических мышечных волокон, в составе которых присутствует в больших количествах гликоген, а добыча энергии осуществляется анаэробным путем. Данный тип тренировок обычно свойственен спортсменам, занимающимся культуризмом, или спринтерам. В то же время для тех видов спорта, где требуется выносливость, необходимо развивать оксидативные мышечные волокна, в которых больше кровеносных сосудов и митохондрий, обеспечивающих аэробный гликолиз.

Мышечные ткани могут быть нескольких типов, если рассматривать их источники развития. То есть, в зависимости от вида эмбриональных зачатков, они могут быть мезенхимными (десмальный зачаток), эпидермальными (прехордальная пластинка либо кожная эктодерма), целомическими (миоэпикардиальная пластинка так называемого висцерального отдела спланхнотома), нейральными (нервная трубка) или соматическими/миотомными.

Разновидности мышечной ткани

Существует гладкая и поперечнополосатая (скелетная и сердечная) мышечная ткань. В составе гладкой ткани присутствуют преимущественно миоциты (одноядерные клетки), имеющие форму веретена. Цитоплазма подобных миоцитов однородная и не имеет поперечных полос. Гладкая мышечная ткань обладает особыми свойствами. Прежде всего, она крайне медленно расслабляется и сокращается. Кроме того, она неуправляема человеком и обычно все ее реакции непроизвольные. Из гладкой мышечной ткани состоят стенки сосудов лимфатической и кровеносной систем, путей мочевыведения, желудка и кишечника. Поперечнополосатая скелетная ткань имеет в своем составе очень длинные многоядерные (от ста и более ядер) миоциты. Если изучить цитоплазму под микроскопом, то она будет выглядеть как сменяющие друг друга светлые и темные полосы. Поперечнополосатой скелетной мышечной ткани свойственна достаточно большая скорость сокращения и расслабления. Деятельность ткани данного типа может управляться человеком, а сама она присутствует в составе скелетных мышц, в верхнем отделе пищевода, в языке, а также в мышцах, отвечающих за движения глазного яблока.

В состав поперечнополосатой сердечной мышечной ткани входят кардиомиоциты с одним или двумя ядрами, а также цитоплазма, исчерченная по периферии цитолеммы поперечными полосами. Кардиомиоциты достаточно сильно разветвлены и формируют в местах соединения вставочные диски с объединенной в них цитоплазмой. Клетки контактируют также посредством цитолемм, в результате чего образуются анастомозы. Поперечнополосатая сердечная мышечная ткань находится в миокарде. Важнейшая особенность данной ткани – это способность в случае клеточного возбуждения к ритмичным сокращениям и последующим расслаблениям. Поперечнополосатая сердечная мышечная ткань относится к непроизвольным тканям (так называемые атипичные кардиомициты). Есть также еще и третья разновидность кардиомицитов – это секреторные кардиомициты, в которых отсутствуют фибриллы.

Важнейшие функции мышечной ткани

К основным функциональным особенностям мышечных тканей относятся такие ее способности, как проводимость, возбудимость, а также сократимость. Мышечная ткань обеспечивает функции теплообмена, движения и защиты. Поимо вышеперечисленного, можно выделить еще одну функциональную особенность мышечных тканей – мимическую (или как ее еще называют, социальную). В частности, лицевые мышцы человека осуществляют управление его мимикой, тем самым транслируя определенный информационный посыл окружающим его другим людям.

Кровоснабжение ткани мышц

Кровь поступает в мышечную ткань благодаря ее работе. Тем самым мышца обеспечивается необходимым количеством кислорода. Если мышца находится в состоянии покоя, то ей, как правило, требуется намного меньше кислорода (обычно этот показатель в пятьсот раз меньший, чем цифра, отражающая потребность в кислороде активно работающей мышцы). Таким образом, в процессе активных мышечных сокращений, объемы поступающей в мышцу крови многократно возрастают. Это примерно от 300 до 500 капилляров на миллиметр кубический или ориентировочно в двадцать раз больше, чем количество крови, необходимое мышце, пребывающей в состоянии покоя.


Мы́шечные тка́ни (лат. textus muscularis - «ткань мышечная») - ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Состоят из вытянутых клеток, которые принимают раздражение от нервной системы и отвечают на него сокращением. Они обеспечивают перемещения в пространстве организма в целом, его движение органов внутри организма (сердце, язык, кишечник и др.) и состоят из мышечных волокон. Свойством изменения формы обладают клетки многих тканей, но в мышечных тканях эта способность становится главной функцией.

Основные морфологические признаки элементов мышечных тканей: удлиненная форма, наличие продольно расположенных миофибрилл и миофиламентов - специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина.

Специальные сократительные органеллы - миофиламенты или миофибриллы обеспечивают сокращение, которое возникает при взаимодействии в них двух основных фибриллярных белков - актина и миозина - при обязательном участии ионов кальция. Митохондрии обеспечивают эти процессы энергией. Запас источников энергии образуют гликоген и липиды. Миоглобин - белок, обеспечивающий связывание кислорода и создание его запаса на момент сокращения мышцы, когда сдавливаются кровеносные сосуды (поступление кислорода при этом резко падает).

По происхождению и строению мышечные ткани значительно отличаются друг от друга, но их объединяет способность к сокращению, что обеспечивает двигательную функцию органов и организма в целом. Мышечные элементы вытянуты в длину и связаны либо с другими мышечными элементами, либо с опорными образованиями.

Различают гладкую, поперечнополосатую мышечные ткани и мышечную ткань сердца.

Гладкая мышечная ткань.

Эта ткань образована из мезенхимы. Структурной единицей этой ткани является гладкомышечная клетка. Она имеет вытянутую веретенообразную форму и покрыта клеточной оболочкой. Эти клетки плотно прилегают друг к другу, образуя слои и группы, разделенные между собой рыхлой неоформленной соединительной тканью.

Ядро клетки имеет вытянутую форму и находится в центре. В цитоплазме расположены миофибриллы, они идут по периферии клетки вдоль ее оси. Состоят из тонких нитей и являются сократительным элементом мышцы.

Клетки располагаются в стенках сосудов и большинства внутренних полых органов (желудка, кишечника, матки, мочевого пузыря). Деятельность гладких мышц регулируется вегетативной нервной системой. Мышечные сокращения не подчиняются воле человека и поэтому гладкую мышечную ткань называют непроизвольной мускулатурой.

Поперечнополосатая мышечная ткань.

Эта ткань образовалась из миотом, производных мезодермы. Структурной единицей этой ткани является поперечнополосатое мышечное волокно. Это цилиндрическое тело, является симпластом. Оно покрыто оболочкой - сарколемой, а цитоплазма называется – саркоплазмой, в которой находятся многочисленные ядра и миофибриллы. Миофибриллы образуют пучок непрерывных волоконец идущих от одного конца волокна до другого параллельно его оси. Каждая миофибрилла состоит из дисков имеющих разный химический состав и под микроскопом кажущихся темными и светлыми. Однородные диски всех миофибрилл совпадают, и поэтому мышечное волокно представляется поперечнополосатым. Миофибриллы являются сократительным аппаратом мышечного волокна.

Из поперечнополосатой мышечной ткани построена вся скелетная мускулатура. Мускулатура является произвольной, т.к. ее сокращение может возникать под влиянием нейронов двигательной зоны коры больших полушарий.

Мышечная ткань сердца.

Миокард - средний слой сердца - построен из поперечнополосатых мышечных клеток (кардиомиоцитов). Имеются два вида клеток: типичные сократительные клетки и атипичные сердечные миоциты, составляющие проводящую систему сердца.

Типичные мышечные клетки выполняют сократительную функцию; они прямоугольной формы, в центре находятся 1-2 ядра, миофибриллы расположены по периферии. Между соседними миоцитами имеются вставочные диски. С их помощью миоциты собираются в мышечные волокна, разделенные между собой тонковолокнистой соединительной тканью. Между соседними мышечными волокнами проходят соединительные волокна, которые обеспечивают сокращение миокарда, как единого целого.

Проводящая система сердца образована мышечными волокнами, состоящими из атипичных мышечных клеток. Они более крупные, чем сократительные, богаче саркоплазмой, но беднее миофибриллами, которые часто перекрещиваются. Ядра крупнее и не всегда находятся в центре. Волокна проводящей системы окружены густым сплетением нервных волокон.



Выполняют очень важную функцию в организмах живых существ - формируют и выстилают все органы и их системы. Особое значение среди них имеет именно мышечная, так как ее значение в формировании наружной и внутренней полости всех структурных частей тела приоритетная. В данной статье рассмотрим, что собой представляет гладкая мышечная ткань, особенности строения ее, свойства.

Разновидности данных тканей

В составе животного организма имеется немного типов мышц:

  • поперечно полосатая;
  • гладкая мышечная ткань.

Обе они имеют свои характеристические черты строения, выполняемые функции и проявляемые свойства. Кроме того, их легко различить между собой. Ведь и та и другая имеют свой неповторимый рисунок, формирующийся благодаря входящим в состав клеток белковым компонентам.

Поперечнополосатая также подразделяется на два основных вида:

  • скелетная;
  • сердечная.

Само название отражает основные области расположения в организме. Ее функции чрезвычайно важны, ведь именно эта мускулатура обеспечивает сокращение сердца, движение конечностей и всех остальных подвижных частей тела. Однако, и гладкая мускулатура не менее значима. В чем заключаются ее особенности, рассмотрим дальше.

В целом можно заметить, что только слаженная работа, которую выполняет гладкая и поперечнополосатая мышечные ткани, позволяет всему организму успешно функционировать. Поэтому определить более или менее значимую из них невозможно.

Гладкая особенности строения

Основные необычные черты рассматриваемой структуры заключаются в строении и составе ее клеток - миоцитов. Как и любая другая, эта ткань образована группой клеток, схожих по строению, свойствам, составу и выполняемым функциям. Общие особенности строения можно обозначить в нескольких пунктах.

  1. Каждая клетка окружена плотным сплетением соединительнотканных волокон, что выглядит, словно капсула.
  2. Каждая структурная единица плотно прилегает к другой, межклетники практически отсутствуют. Это позволяет всей ткани быть плотноупакованной, структурированной и прочной.
  3. В отличие от поперечнополосатой коллеги, данная структура может включать в свой состав неодинаковые по форме клетки.

Это, конечно, не вся характеристика, которую имеет Особенности строения, как уже оговаривалось, заключаются именно в самих миоцитах, их функционировании и составе. Поэтому ниже этот вопрос будет рассмотрен подробнее.

Миоциты гладкой мускулатуры

Миоциты имеют разную форму. В зависимости от локализации в том или ином органе, они могут быть:

  • овальными;
  • веретеновидными удлиненными;
  • округлыми;
  • отростчатыми.

Однако в любом случае общий состав их сходен. Они содержат такие органоиды, как:

  • хорошо выраженные и функционирующие митохондрии;
  • комплекс Гольджи;
  • ядро, чаще вытянутое по форме;
  • эндоплазматический ретикулум;
  • лизосомы.

Естественно, и цитоплазма с обычными включениями также присутствует. Интересен факт, что миоциты гладкой мускулатуры снаружи покрыты не только плазмолеммой, но и мембраной (базальной). Это обеспечивает им дополнительную возможность для контакта друг с другом.

Эти места соприкосновения составляют особенности гладкой мышечной ткани. Места контактов именуются нексусами. Именно через них, а также через поры, которые в этих местах имеются в мембране, происходит передача импульсов между клетками, обмен информацией, молекулами воды и другими соединениями.

Есть еще одна необычная черта, которую имеет гладкая мышечная ткань. Особенности строения ее миоцитов в том, что не все из них имеют нервные окончания. Поэтому настолько важны нексусы. Чтобы ни одна клетка не осталась без иннервации, и импульс мог передаться через соседнюю структуру по ткани.

Существует два основных типа миоцитов.

  1. Секреторные. Их основная функция заключается в выработке и накоплении гранул гликогена, сохранении множества митохондрий, полисом и рибосомальных единиц. Свое название эти структуры получили из-за белков, содержащиеся в них. Это актиновые филаменты и сократительные фибриновые нити. Данные клетки чаще всего локализуются по периферии ткани.
  2. Гладкие Имеют вид веретеновидных удлиненных структур, содержащих овальное ядро, смещенное к середине клетки. Другое название лейомиоциты. Отличаются тем, что имеют более крупные размеры. Некоторые частицы маточного органа достигают 500 мкм! Это достаточно значительная цифра на фоне всех остальных клеток в организме, больше разве что яйцеклетка.

Функция гладких миоцитов состоит также в том, что они синтезируют следующие соединения:

  • гликопротеиды;
  • проколлаген;
  • эластаны;
  • межклеточное вещество;
  • протеогликаны.

Совместное взаимодействие и слаженная работа обозначенных типов миоцитов, а также их организация обеспечивают строение гладкой мышечной ткани.

Происхождение данной мускулатуры

Источник образования данного типа мускулатуры в организме не один. выделяют три основных варианта происхождения. Именно этим и объясняется различия, которые имеет строение гладкой мышечной ткани.

  1. Мезенхимное происхождение. такое имеет большая часть гладких волокон. Именно из мезенхими образуются практически все ткани, выстилающие внутреннюю часть полых органов.
  2. Эпидермальное происхождение. Само название говорит о местах локализации - это все кожные железы и их протоки. Именно они образованы гладкими волокнами, имеющими такой вариант появления. Потовые, слюнные, молочные, слезные - все эти железы выделяют свой секрет, благодаря раздражению клеток миоэпителиоцитов - структурных частичек рассматриваемого органа.
  3. Нейральное происхождение. Такие волокна локализуются в одном определенном месте - это радужка, одна из оболочек глаза. Сокращение или расширение зрачка иннервируется и управляется именно этими клетками гладкой мускулатуры.

Несмотря на разное происхождение, внутренний состав и выполняемые свойства всех в рассматриваемой ткани остаются примерно одинаковыми.

Основные свойства данной ткани

Свойства гладкой мышечной ткани соответствуют таковым и для поперечнополосатой. В этом они едины. Это:

  • проводимость;
  • возбудимость;
  • лабильность;
  • сократимость.

При этом существует и одна достаточно специфичная особенность. Если поперечнополосатая скелетная мускулатура способна быстро сокращаться (это хорошо иллюстрирует дрожь в теле человека), то гладкая может долго удерживаться в сжатом состоянии. Кроме того, ее деятельность не подчиняется воле и разуму человека. Так как иннервирует ее

Очень важным свойством является способность к длительному медленному растяжению (сокращению) и такому же расслаблению. Так, на этом основана работа мочевого пузыря. Под действием биологической жидкости (ее наполнением) он способен растягиваться, а затем сокращаться. Стенки его выстланы именно гладкой мускулатурой.

Белки клеток

Миоциты рассматриваемой ткани содержат много разных соединений. Однако наиболее важными из них, обеспечивающими выполнение функций сокращения и расслабления, являются именно белковые молекулы. Из них здесь содержатся:

  • миозиновые нити;
  • актин;
  • небулин;
  • коннектин;
  • тропомиозин.

Эти компоненты обычно располагаются в цитоплазме клеток изолированно друг от друга, не образуя скоплений. Однако в некоторых органах у животных формируются пучки или тяжи, именуемые миофибриллами.

Расположение в ткани этих пучков в основном продольное. Причем как миозиновых волокон, так и актиновых. В результате образуется целая сеть, в которой концы одних сплетаются с краями других белковых молекул. Это важно для быстрого и правильного сокращения всей ткани.

Само сокращение происходит так: в составе внутренней среды клетки есть пиноцитозные пузырьки, в которых обязательно содержатся ионы кальция. Когда поступает нервный импульс, говорящий о необходимости сокращения, этот пузырек подходит к фибрилле. В результате ион кальция раздражает актин и он продвигается глубже между нитями миозина. Это приводит к затрагиванию плазмалеммы и в результате миоцит сокращается.

Гладкая мышечная ткань: рисунок

Если говорить о поперечнополосатой ткани, то ее легко узнать по исчерченности. Но вот что касается рассматриваемой нами структуры, то такого не происходит. Почему гладкая мышечная ткань рисунок имеет совсем иной, нежели близкая ей соседка? Это объясняется наличием и расположением белковых компонентов в миоцитах. В составе гладкой мускулатуры нити миофибрилл разной природы локализуются хаотично, без определенного упорядоченного состояния.

Именно поэтому рисунок ткани просто отсутствует. В поперечнополосатой нити актина последовательно сменяются поперечным миозином. В результате возникает рисунок - исчерченность, благодаря которой ткань и получила свое название.

Под микроскопом гладкая ткань выглядит очень ровной и упорядоченной, благодаря плотно прилегающим друг к другу продольно расположенным вытянутым миоцитам.

Области пространственного расположения в организме

Гладкая мышечная ткань образует достаточно большое количество важных внутренних органов в животном теле. Так, ей образованы:

  • кишечник;
  • половые органы;
  • кровеносные сосуды всех типов;
  • железы;
  • органы выделительной системы;
  • дыхательные пути;
  • части зрительного анализатора;
  • органы пищеварительной системы.

Очевидно, что места локализации рассматриваемой ткани крайне разнообразны и важны. Кроме того, следует заметить, что такая мускулатура формирует в основном те органы, которые подвержены автоматии в управлении.

Способы восстановления

Гладкая мышечная ткань образует достаточно важные структуры, что иметь способность к регенерации. Поэтому для нее характерны два основных пути восстановления при повреждениях различного рода.

  1. Митотическое деление миоцитов до образования нужного количества ткани. Самый распространенный простой и быстрый способ регенерации. Так происходит восстановление внутренней части любого органа, образованного гладкой мускулатурой.
  2. Миофибробласты способны трансформироваться в миоциты гладкой ткани при необходимости. Это более сложный и редко встречаемый путь регенерации данной ткани.

Иннервация гладкой мускулатуры

Гладкая свои выполняет независимо от желания или нежелания живого существа. Это происходит оттого, что ее иннервацию осуществляет вегетативная нервная система, а также отростки нервов ганглиев (спинальных).

Примером этому и доказательством может служить сокращение или увеличение размеров желудка, печени, селезенки, растяжение и сокращение мочевого пузыря.

Функции гладкой мышечной ткани

Каково же значение этой структуры? Зачем нужна ее следующие:

  • длительное сокращение стенок органов;
  • выработка секретов;
  • способность отвечать на раздражения и воздействия возбудимостью.

Похожие статьи